The NOvA Near Detector

Mark Messier
Presentation to the NOvA Working Group
20 February 2007

Outline of this presentation

- 1. Review of the role of the near detector in the NOvA experiment
 - 1. I will focus on the roll played in the v_e appearance measurement
 - 2. Plays roll in v_{μ} CC disappearance measurement but I will spend less time on that
- 2. Important near detector design parameters
 - 1. Location
 - 2. Size
 - 3. Orientation

<u>v_e appearance search</u>

- NOvA's primary goal is to extend the search for v_{μ} - v_{e} oscillations a factor of 10 beyond results expected from MINOS
- Look for excess of v_e
 CC-like events over backgrounds at far detector

$$FOM = \frac{N_s}{\sqrt{N_b}}$$

Background sources for $v_{\underline{e}}$ appearance search

- To push backgrounds down to level of intrinsic v_e requires:
 - 50:1 rejection against v_{μ} CC at far detector 500:1 at near detector
 - 100:1 rejection against NC
 - Power to reject the beam v_e comes from energy resolution
- Need to characterize detector performance well

Statistical unfolding background from signal

 v_e CC signal v_μ CC

To do v_e CC event tagging NOvA looks at ~15 event shape variables in an artificial neural network. 4 plotted here.

Particle ID performance

PID parameter by ANN

	Eff.[%]	# accepted
ν_{e} signal	28.8 (28.7)	208.7(163.2)
BG	0.38 (0.39)	32.3 (32.8)
NC	0.24	15.1
$ u_{\mu}$ CC	0.08	1.7
v_e beam	9.47	15.5

Numbers in parentheses are for w/o matter effect.

- Calculations shown for CHOOZ limit
 - •Goal of experiment is to push limit x10 beyond: 16 signal events over a background of 33 events
 - •Background comes equally from NC and beam ν_e
- •Small changes make a big difference: Changing NC rejection factor according to the dotted lines at left increases the background by a factor of two

Uncertainty on background

Sources of uncertainty in background

- Flux
- Cross-sections
- Detector response (NC $\triangleright \nu_e$ -CC fake rate, ν_μ -CC $\triangleright \nu_e$ -CC fake rate, energy resolution)
- These are all correlated.
 - To measure a cross-section need to divide out the flux and detection efficiency
 - To understand detection efficiency need to understand how to correctly distribute the event kinematics
- "Dead reckoning" these with Monte Carlos yields typical uncertainties of:
 - Flux: 20-30%
 - Cross-sections: 20-50% depending on modes
 - − Detector response: ~50% for the long tails of PID distributions
- If one can place an identical detector in an identical beam, all three factors cancel in a near-far comparison leaving only the effects of oscillations

<u> 2K Example: v</u>, Phys.Rev.Lett.96:181801,2006

TABLE II: Systematic uncertainties [%] in the expectation of ν_{μ} -originated background. When estimating the total uncertainty, the correlations between the neutrino fluxes and the cross sections are taken into account.

~30% error on background using near detectors

- 14% cross-sections
- 6% neutrino flux
- 22% detector response

Flux: Prediction of v_e flux using on-axis measurement

- From Monte Carlos studies it seems possible to estimate the off-axis ν_μ and ν_e flux from an on-axis measurement to roughly 3%
- Study did not account for uncertainties in neutrino cross-sections (extrapolation from ~6 GeV to 2 GeV)
- Practical problem: instantaneous rates on-axis when operating at >1 MW
- Flux is only part of equation

Neutrino cross-sections

- 2 GeV is a tricky energy range for neutrino cross-sections
- Even best known cross-sections (CC-QE) have ~15-20% uncertainties
- Uncertainties for exclusive channels (for example NC single π⁰ production, bottom left) are significantly larger
- MINERvA will help. But, how well can MINERvA measure NC cross-sections at 2 GeV in a wide-band beam which peaks at 3.5 GeV and has a long tail?
 - ...And of course, cross-sections are only one part of the story

Detection efficiency

- To motivate my 50% estimate on the detection efficiency consider the MINOS v_u CC analysis.
- MINOS is optimized for muon detection, but small amount of NC leaks into the v_{μ} CC sample
- MINOS estimates the uncertainty on the NC leakage into the $\nu_{\mu}CC$ sample to be +/-50%
- Small effect on oscillation measurement as ND and FD rates are very nearly 100% correlated and $\nu_{\rm u}$ CC rate is large
- NOvA doesn't expect nearly as large a signal as MINOS

The LSND and MiniBooNE examples

 $87.9 \pm 22.4 \pm 6.0$ events above beam backgrounds 3.8σ discovery?

MiniBooNE started data taking in 2002 Working to reduce uncertainties in background to acceptable levels

- Cross-sections: ~20%
- Flux: ~50% → 20% w/ HARP data
- Detector response: ~50% → 20% (??)

Why NOvA needs an off-axis near detector

- To reach NOvA's goal of a 3-sigma observation of non-zero vµ-ve oscillations at the atmospheric length scale we need to control systematic uncertainties in the background estimate below 10%
- The backgrounds to the NOvA ve search come 1/2 from the intrinsic ve component of the beam and 1/2 from rare (1:500) NC events which fake a ve signal
- Uncertainties from the neutrino flux, the interaction cross-sections, and the detector response are all order 10-50%
 - On-axis measurements of the νμ CC rate (say by MINOS, MINERvA,...) may allow prediction of off-axis flux, but not cross-sections or NOvA detector response
 - On-axis measurements of neutrino cross-sections do not give any information about the rate at which the NOvA detector tags NC and νμ-CC events as ve signal events
 - Only an off-axis measurement of the response of a NOvA detector measures the correct product of flux x cross-section x detector response allowing the goal of <10% uncertainty in background to be reached
- NOvA near detector has other benefits:
 - Faster results
 - Reduction of systematic error by 10% is like gaining 20% in exposure
 - Large control sample of interactions for study: faster understanding of detector
 - Better analysis:
 - Near detector is the only monitor of the off-axis neutrino beam
 - Ultimate reach of experiment improves proportionally to the size of the systematic error on the background

Ideal case

- Ideally one would expose a detector which is identical to the far detector to the same beam at a location where the oscillation probabilities are negligible
 - Same beam: same flux, same cross-sections
 - Identical detector: same efficiencies, same cross-sections
- Differences in the event rates seen in the two detectors could then be ascribed to oscillations
- Important Caveat: Even in the ideal case, the near detector is much more sensitive to the v_{μ} -CC to e-like fake rate than the far detector as the v_{μ} -CC component is not oscillated away at the near site. This difference between near and far is mitigated by ensuring that this fake rate is as small as possible
- This ideal case can be nearly achieved by placing the near detector at a distance large compared to the 670 m length of the NuMI decay pipe

Spectra off-axis at z=2.5 km

- This is the most distant location on the Fermilab site. It would be between 100 and 130 m underground
- Flux, cross-section, and detection efficiencies would very nearly cancel, leaving only oscillation to cause near-far differences
- Added benefit: Event rate would be ~1 interaction per spill eliminating overlap problems
- However, there are sites available in NuMI tunnels that give reasonable matches to the Ash River fluxes

Near detector size requirement

- Would like roughly 2000 v_e CC events in 1 year of running. Allows ~2% measurement of total rate in given set of beam conditions and enough statistics to make distributions
- 20 tons of fiducial mass to achieve this
- This is a volume of NOvA detector 3 m on a side
- Radiation length in NOvA detector is 44 cm. Moliere radius is roughly 10 cm
 - To contain shower longitudinally requires 10 radiation lengths (4.4 m)
 - To contain shower on sides requires $\sim 5 R_M (50 \text{ cm})$
- So a cubic fiducial volume leads to a detector 5 x 5 x 7 meters in size

Near detector size requirement

Muon ranger

Accommodate size constraints from the tunnel

 Make fiducial volume thin, but long: 1.65 x 2.85 x 7.4 m

Use iron to range out 2
 GeV muons in a compact way

Length required for muon containment

For ν_{μ} disappearance measurement we want to measure the unoscillated ν_{μ} rate over the dip region

For the CDR Near Detector:

- Muon range before the muon ranger is 975 to 2400 MeV
- Muon range with the muon ranger is 2425 to 3925 MeV

CDR-1 block of 31 planes from the fiducial region:

- Muon range before the muon ranger is 975 to 1975 MeV
- Muon range with the muon ranger is 2425 to 3500 MeV

Near detector angle

- Previous slides show that there are locations in the access tunnel that provide a good match to the ν_{μ} , ν_{e} , and NC spectra.
- Have to accept some constraints on the geometry of the detector imposed by the tunnel
- Orientation of detector with respect to beam
 - Tunnel wall runs at 11° to the beam axis
 - If we rotate detector as far as it will go in tunnel remaining angle is 5° to the beam axis and the detector blocks the tunnel

Near detector orientation

5.73 deg Maximum rotation w/o digging

II deg Parallel to tunnel

Near detector angle: muon containment

This long, narrow detector has a problem for muon containment

Red: Tracks entering at 11° to detector face.

Blue: Tracks entering at 5° to detector face

Near detector angle: muon containment

Particle ID in a rotated detector

- Test performance of particle ID in a rotated detector 5 degrees wrt to beam
- Differences shown for NC backgrounds. Solid is non-rotated detector, dashed is rotated detector
- Summarized in table on next slide

Particle ID in rotated detector

• In far detector rotated 5° to the beam (#'s in parenthesis):

	<u>PID eff.</u>	Total eff.	No. accepted
nu_e signal:	0.367 (0.387)	0.288 (0.301)	208.7 (218.3)
nu_mu CC:	0.002 (0.003)	0.001 (0.001)	1.7 (2.22)
NC:	0.010 (0.018)	0.002 (0.004)	15.1 (26.9)
nu_e BG:	0.272 (0.244)	0.095 (0.079)	15.5 (13.0)
All BG:	0.013 (0.019)	0.004 (0.005)	32.3 (42.1)

- Effect on *near or far* detector performance:
 - Muon tracking efficiency ~1% lower
 - NC rate increases 70% relative to signal
 - $\nu_{\mu}CC$ rate increases 80% relative to signal. Issue for near detector where $\nu_{\mu}CC$ rate is 10x higher
 - FOM for v_e appearance drops from 36.7 to 33.7
- We could eliminate the near/far difference by rotating the far detector, but...
 - 1% of detector mass is ~\$2M, 1% of Anu upgrades is ~\$0.6M
 - Gaining 9% in FOM requires 18% more exposure. Equivalent to ~\$36M in detector mass or ~\$10M of Anu upgrades
- If near detector is rotated and far detector is not, then we have to make ~70% corrections to the rates measured at the ND

Near detector angle summary

- 11 degrees is bad for muon containment
- 5 degrees may be acceptable, however:
 - See significant change in NC/signal rates which would have to be corrected near to far
 - We block the tunnel (John's talk has more about options)
- "Risk management": Judgement of collaboration was that it is worth up to ~0.5 kt of far detector mass to get this angle right, reduce the systematic error on the background and not rely on Monte Carlo to predict the tails of the PID distributions correctly
- Our preferred option is the cheapest: do the minimum excavation required to rotate to the correct angle